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Abstract. We discuss the emergence of an orthogonality catastrophe in the response of a
composite fermion liquid as the filling factorν approaches 1/2m, wherem = 1, 2, 3 . . .. A
tunnelling experiment is proposed in which dramatic changes in theI–V characteristic should
be observable asν is varied. ExplicitI–V characteristics calculated within the so-called modified
random phase approximation, are provided forν = 1

3 → 1
2 .

Composite fermion theory [1–4] has been remarkably successful in explaining the fractional
quantum Hall effect in terms of the integer quantum Hall effect of a composite fermion
metal [5, 6]. Within this theory, the ground state of a two-dimensional electron gas
(2DEG) at even-denominator filling factorsν = 1/2m, m = 1, 2, 3 . . . , is a compressible
Fermi liquid containing composite fermions which experience zero effective magnetic field
B? [2–4]. Various recent experiments on systems nearν = 1

2 have indeed been interpreted
in terms of a Fermi sea of composite fermions [5, 6]. Further confirmation of the details of
the theory asν → 1/2m is still however desirable.

In this letter, we propose an experiment to probe the emergence of the Fermi surface in
a composite fermion liquid asν → 1/2m. Mono-energetic electrons are allowed to tunnel
into a quantum dot placed close to the 2DEG. We find the signature of the presence of a
Fermi surface atν = 1/2m to be a dramatic ‘orthogonality catastrophe’ in the tunnelling
current (I ) as a function of the gate voltage (V ) of the dot. Forν 6= 1/2m, strong oscillatory
signatures in theI–V characteristic are predicted—these signatures areν-dependent and can
be used to deduce the composite fermion effective mass. In addition, the spectrum for odd-
denominator fractions will yield valuable information about the ‘gapfull’ excitations of these
states.

Our proposed experiment is analogous to inverse photoemission spectroscopy (IPS)
[7, 8] experiments on ordinary metals, with the atomic core level replaced by a quantum
dot. In an IPS experiment, a free electron falls into a hole in an atomic core state thereby
emitting a photon of energyω0. The intensity of the emitted photon is identically zero at the
threshold energyω0. This is a consequence of the so-called ‘orthogonality catastrophe’ (OC);
the transition involved is forbidden because the initial and final states are orthogonal [7–11].

Figure 1 provides a schematic illustration of our proposed experiment. Quantum dot
A acts as an electron monochromator, because only source electrons with energyε can
resonantly tunnel to A. An electron in A will resonantly tunnel to quantum dot B only if
there are states available with energyε. In the absence of the 2DEG the density of states
of B is a δ-function at energyε0, and tunnelling occurs only whenε = ε0. However, the
presence of the 2DEG means that the density of states is asymmetrically broadened to higher
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Figure 1. Schematic diagram of the junction. A gate voltageV is applied to dot B to alter
the energy of dot B with respect to A. The source-drain voltage is kept fixed. The plane of the
2DEG is perpendicular to the page.

energies due to the neutral excitations in the 2DEG induced by the filled dot—this implies
that tunnelling can occur ifε > ε0. The electron can then tunnel out into the drain lead to
be measured as a current, determined by the tunnelling ratesγa, 0, andγb. The currentI
is measured as function of the gate voltageV controlling the difference between the energy
ε of the injected electron and the energyε0 of dot B. This resonant tunnelling is similar
to IPS with a zero energy photon, and the analogue of the IPS spectrum is the tunnelling
I–V characteristic; the thresholdV = V0 in this case is such thatε0 = ε. Generally,
ε − ε0 = e(V − V0), hence the creation of excitations implies that the spectrum is non-zero
for V > V0.

Once an electron has tunnelled into dot B it must reside there for a time greater than
the response time of the 2DEG. This implies that the electron tunnels out with rateγb less
than the desired resolution, which is typically the composite fermion Landau-level spacing
for a filling factor close toν = 1

2. The other two rates0 and γa are determined by the
following simple argument. The average current can be written as

I = e

T

whereT is the total time taken to tunnel from source to drain. In terms of the tunnelling
rates we have for sequential tunnelling

T ∼ 1

γa
+ 1

0
+ 1

γb
.

In order for the tunnelling current to reflect only the density of states of dot B, we choose
the conditions

γa ∼ γb ≡ γ 0 � γ γ 6 ω?c (1)
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in which case the current is given by [9]

I = e0 = e00γRe
∫ ∞

0
dt exp

[
i
e(V − V0)t

h̄
− F(t)− γ t

]
. (2)

The time-integral in equation (2) gives the convolution of the density of states of dot B
with a Lorentzian of widthγ representing the broadening due to tunnelling to the drain. In
the absence of the 2DEG, the functionF(t) = 0, andI (V0) = e00. The bare tunnelling
rate00 is determined solely by the width and height of the barrier between dots A and B.
A suitable value consistent with equation (1) is ¯h00 ≈ 6 µeV. The density of states of the
electron, once it has tunnelled to dot B, depends on the excitation spectrum of the 2DEG
through the function

F(t) =
∫ ∞

0
dω
(1− e−iωt )

ω2
ρ(ω)

where

ρ(ω) = 1

h̄

∑
q

|V (q)|2S(q, ω)

is the density of single pair-excitations of the 2DEG due to the sudden appearance of
an electron in B.V (q) is the potential experienced by the 2DEG due to the electron in
B [7]. The dynamic structure factorS(q, ω) [12] contains information about the excitation
spectrum of the 2DEG, and is calculated using the Chern–Simons theory of composite
fermions within the modified random phase approximation (MRPA) [4]. We note that in
approximatingF(t) as above, we are treating the excitations of momentumq and energy
ω as independent bosons, which is standard in the theory of IPS in ordinary metals. The
theory includes all such bosonic excitations exactly to all orders in perturbation theory [7].

The MRPA resolves the conflict of requiring both renormalization of the composite
fermion mass and satisfaction of Kohn’s theorem [2–4, 12]. In the limit where the electron
cyclotron energy is large compared with the Coulomb energy, the composite fermion mass
is expected to scale as the square-root of the magnetic field. Using the RPA equations with
this renormalized mass leads to satisfying neither Kohn’s theorem nor thef -sum rule; the
MRPA repairs this within Fermi-liquid theory by adding a Landau interaction term. In our
calculations we use a renormalized composite fermion effective mass which scales as the
square-root of the magnetic field such that

m?CF =
4πε0εrh̄

2

0.3e2lc
(3)

where the magnetic length islc and the dielectric constantεr = 13 [2–4].
There are three essential features to be incorporated in the experimental design (see

figure 1). First, the probe dot B must be separated from the plane of the 2DEG by a barrier
which is sufficiently high to prevent tunnelling between B and the 2DEG. However, B
must be as close to the 2DEG as possible because the Fourier transform of the potential
experienced by the 2DEG due to an electron at B decays exponentially with the separation
d. Second, the source and drain leads and dot A must be far enough away from the 2DEG
so that the only potential experienced by the 2DEG comes from the electron at B. Third, the
levels in the dots must be well spaced so that only one level contributes to the tunnelling;
two-electron tunnelling will be suppressed because of Coulomb blockade. Our calculations
are therefore based on a 2DEG with 1015 electrons m−2 placedd = 50 Å away from a dot
with a confinement length of 50̊A.
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Figure 2. Current atν = 1
2 as a function of the voltage applied above threshold, i.e.V − V0.

Solid curve: spectrum in limit of perfect resolution, i.e. no instrumental broadening. Dashed
curve: current with a broadening of 0.1 meV.

Figure 2 shows theI–V characteristic calculated for the compressible state with filling
factor ν = 1

2. The solid line does not include any instrumental broadening thereby
emphasizing the suppression at threshold. The dashed curve shows the current with a
Lorentzian broadening of widthγ = 0.1 meV; here there is a small current at and below
the threshold. The peaked shape is completely different from the power-law which arises
for an ordinary metal [7–11]. The OC is clear, because the threshold current is negligible—
the low energy excited states have a very small overlap with the initial state and are
strongly suppressed, in complete contrast to those in an ordinary metal. The suppression is
a consequence of the diffusive mode which dominates the dynamic structure factor atν = 1

2
at low energies and momenta [2]. This mode arises from the scattering of the composite
fermions by their attached flux tubes. The sudden appearance of the perturbing potential
causes density fluctuations in the 2DEG, which induce modulations in both the scalar and
vector potentials resulting from the diagonal and off-diagonal terms in the Chern–Simons
interaction; these potentials further scatter the composite fermions thereby creating more
density fluctuations. The result is a diffusive mode iω = ηq2, corresponding to a screening
charge density

ρ(q, t) ∝ 1− exp

(
− t
τ

)
where 1/τ = ηq2. Thus whereas the characteristic response time for electrons to screen the
charge is very short, the response time for the composite fermions is found to diverge in the
long-wavelength limit. This is a consequence of there being more low-energy excitations
in the composite fermion gas than in an electron gas.

The power-law divergence in ordinary metals arises from a density of pair excitations
ρ(ω) which goes linearly withω for energies small compared with the Fermi energy [7].
This is not true for the composite fermion metal, where we findρ(ω) varies roughly as√
ω. One can derive this result analytically using the single-mode approximation employed

by He et al [13] in their study of tunnelling between two 2DEGs as a function of the bias
voltage. It should be noted that our work differs in two ways from that of reference [13].
First, and most importantly, their problem involves thechargedexcitations of the 2DEG
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because their tunnelling process removes an electron from one 2DEG and places it in the
other. They treat the added (removed) electron as an infinitely massive foreign particle
inserted into theN -electron system, thereby reducing the problem to that of the x-ray
edge problem. Our experiment is, by design, analogous to IPS without further need for
approximations because the tunnelling electron is both distinguishable from the 2DEG and
localized. Our experiment therefore strictly probes theneutral excitations of the 2DEG.
Second, our work differs in the level of approximation employed for the dynamic structure
factor and the subsequent determination of the density of pair excitations. We use the full
MRPA dynamic structure factor, which allows us to calculate theI–V characteristic at both
odd- and even-denominator filling factors. By contrast, the single-mode approximation used
in reference [13] is valid only at even-denominator filling factors. Applying the single-mode
approximation to our experiment (withd = 0) we predict a current of the form

I ∝ 1√
(V − V0)3

exp

(
α

V0− V
)

V > V0

which is in qualitative agreement with the current calculated numerically.
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Figure 3. Current calculated forν = 1
3 as a function of the voltage applied above threshold,

i.e. V − V0. Finite broadening as in figure 2.

Figures 3, 4 and 5 show theI–V characteristic for the 2DEG at three odd-denominator
filling factors originating from theν = 1

2 state. A state atν = p/(2mp + 1) can be
described in terms of composite fermions at effective filling factorν? = p interacting with
flux tubes carrying 2m magnetic flux quanta. We have considered the cases wherem = 1
andp = 1, 3, and 7, which correspond to the fractionsν = 1

3,
3
7 and 7

15 respectively. The
I–V characteristic atν = p/(2mp+1) differs in two important respects from that atν = 1

2.
First, there is now no orthogonality catastrophe, because there is a gap to excitations. While
in the absence of the 2DEG the threshold current ise00, the presence of the 2DEG reduces
the threshold current by the Debye–Waller factor exp(−L), where

L =
∫ ∞

0
dω
ρ(ω)

ω2
.

This current decreases as the effective magnetic field is reduced becauseL increases,
signifying the reduction in the overlap of the initial state and final ground state; in the limit
of zero effective fieldL → ∞, implying that the overlap tends to zero yielding the OC.
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Figure 4. Current atν = 3
7 as a function ofV − V0. Finite broadening as in figure 2.
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Figure 5. Current atν = 7
15 as a function ofV − V0. Finite broadening as in figure 2.

Second, theI–V spectrum develops oscillations superimposed on an envelope similar in
shape to theI–V curve forν = 1

2. The period of these oscillations is given by the composite
fermion cyclotron frequencyω?c = eB?/m?CF, whereB? = neh/ep. A measurement of this
period can thus provide an experimental test of the validity of equation (3).

At high effective fieldsB?, such asν? = 1 (ν = 1
3), the oscillations dominate the

spectrum and the threshold current is large becauseL is small. AsB? is reducedL increases,
thus the threshold current decreases and the envelope function becomes more distinct. As
expected theB? → 0 limit resembles theB? = 0 calculation giving further confidence
in our results. The transition from high to low effective field displayed in figures 2–5 is
quite dramatic—the peak at threshold changes to a complete suppression. The shape of
ρ(ω) away fromν = 1/2m reflects the gapfull nature of the excitations, and contains peaks
separated byω?c. WhenB? is small,ρ(ω) has an envelope which goes roughly as

√
ω for

low energies and hence tends towards theB? = 0 (i.e. ν = 1/2m) shape.
We now compare the response of an ordinary metal in a weak magnetic field with

the composite fermion system described above [7, 10, 14]. TheI–V spectrum for ordinary
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electrons in zero magnetic field diverges as a power-law, being identically zero at threshold.
On applying a weak magnetic field the spectrum develops oscillations with a period equal
to the cyclotron frequency but with the divergent shape retained as an envelope. Since
there is now a gap to excitations, there is no OC andI (V0) = e00 exp(−L). The effect of
applying stronger fields is to transfer weight from the higher energy peaks to the threshold
peak. Therefore the electron spectrum is always largest around threshold. This is in sharp
contrast to the present case of composite fermions where, as shown above, the near-threshold
behaviour changes from being completely suppressed in zero effective field (e.g.ν = 1

2), to
being highly peaked at large effective fields (e.g.ν? = 1, and henceν = 1

3).
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